Operasi Hitung Pada Bentuk Aljabar


1. Penjumlahan dan Pengurangan Bentuk Aljabar

Pada bentuk aljabar, operasi penjumlahan dan pengurangan hanya dapat dilakukan pada suku-suku yang sejenis. Jumlahkan atau kurangkan koefisien pada suku-suku yang sejenis.
Contoh:
Tentukan hasil penjumlahan dan pengurangan bentuk aljabar
berikut.
a. –4ax + 7ax
b. (2 – 3x + 2) + (4 – 5x + 1)
c. (3 + 5) – (4 – 3a + 2)
Penyelesaian:
a. –4ax + 7ax = (–4 + 7)ax = 3ax
b. (2 – 3x + 2) + (4 – 5x + 1)
= 2 – 3x + 2 + 4 – 5x + 1
= 2 + 4 – 3x – 5x + 2 + 1
= (2 + 4) + (–3 – 5)x + (2 + 1)
= 6 – 8x + 3
c. (3 + 5) – (4 – 3a + 2)
= 3 + 5 – 4 + 3a – 2
= 3 – 4 + 3a + 5 – 2
= (3 – 4) + 3a + (5 – 2)
= – + 3a + 3

2. Perkalian
Perlu kalian ingat kembali bahwa pada perkalian bilangan bulat berlaku sifat distributif perkalian terhadap penjumlahan, yaitu a × (b + c) = (a × b) + (a × c) dan sifat distributif perkalian terhadap pengurangan, yaitu a × (b – c) = (a × b) – (a × c), untuk setiap bilangan bulat a, b, dan c. Sifat ini juga berlaku pada perkalian bentuk aljabar.
a. Perkalian antara konstanta dengan bentuk aljabar
Perkalian suatu bilangan konstanta k dengan bentuk aljabar suku satu dan suku dua dinyatakan sebagai berikut.
k(ax) = kax
k(ax + b) = kax + kb

Contoh:
Jabarkan bentuk aljabar berikut, kemudian sederhanakanlah.
a. 4(p + q)
b. 5(ax + by)
c. 3(x – 2) + 6(7x + 1)
d. –8(2x – y + 3z)
Penyelesaian:
a. 4(p + q) = 4p + 4q
b. 5(ax + by) = 5ax + 5by
c. 3(x – 2) + 6(7x + 1) = 3x – 6 + 42x + 6
= (3 + 42)x – 6 + 6
= 45x
d. –8(2x – y + 3z) = –16x + 8y – 24z

b. Perkalian antara dua bentuk aljabar
Sebagaimana perkalian suatu konstanta dengan bentuk aljabar, untuk menentukan hasil kali antara dua bentuk aljabar kita dapat memanfaatkan sifat distributif perkalian terhadap penjumlahan dan sifat distributif perkalian terhadap pengurangan.
Selain dengan cara tersebut, untuk menentukan hasil kali antara dua bentuk aljabar, dapat menggunakan cara sebagai berikut. Perhatikan perkalian antara bentuk aljabar suku dua dengan suku dua berikut.

Selain dengan cara skema seperti di atas, untuk mengalikan bentuk aljabar suku dua dengan suku dua dapat digunakan sifat distributif seperti uraian berikut.

Adapun pada perkalian bentuk aljabar suku dua dengan suku tiga berlaku sebagai berikut.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s